Гальваническая развязка

В электронике и электротехнике используется большое количество схем, в которых требуется изолировать или отделить высокое силовое напряжение от низкого напряжения управляющих цепей. За счет этого создается своеобразная защита низковольтных устройств от влияния высокого напряжения. То есть, в таких цепях уже нет течения обычного электрического тока. В таких случаях, при отсутствии тока, между устройствами возникает большое омическое сопротивление, вызывающее разрыв цепи. Данную проблему успешно решает гальваническая развязка, с помощью которой убирается гальваническая связь между устройствами.

Таким образом, энергия или сигналы будут передаваться от одной цепи к другой при отсутствии между ними какого-либо электрического контакта. Применение гальванических развязок дает возможность бесконтактного управления, обеспечивает надежную защиту людей и оборудования от поражения электротоком.

Принцип действия

Гальваническая развязка в соответствии со своей функцией известна также под понятием гальванической изоляции. Данные системы обеспечивают электрическую изоляцию конкретной цепи по отношению к другим видам цепей, находящихся рядом.

Благодаря своим особенностям, гальваническая развязка обеспечивает обмен сигналами или энергией между цепями, исключая при этом непосредственный электрический контакт. С ее помощью образуется независимая сигнальная цепь за счет формирования независимого контура тока сигнальной цепи по отношению к токовым контурам других цепей.

Гальваническая изоляция используется во время измерений в силовых цепях и в цепях обратной связи. Данное техническое решение обеспечивает также электромагнитную совместимость, усиливает защиту от помех, повышает точность измерений. Используемый блок гальванической развязки на входе и выходе каждого устройства способствует улучшению их совместимости с другими приборами в условиях сложной электромагнитной обстановки.

Для того чтобы лучше представить себе, что такое гальваническая развязка, можно рассмотреть ее действие на примере стандартного промышленного электродвигателя. На производстве в большинстве случаев используется значение питающего напряжения, значительно превышающее 220 вольт и представляющее серьезную опасность для обслуживающего персонала.

В связи с этим, подача тока на обмотки и включение двигателя осуществляется с применением специальных устройств, обеспечивающих коммутацию силовых цепей. В свою очередь, коммутаторы также управляются, чаще всего кнопками включение и выключения. Именно на этом участке и требуется развязка, защищающая оператора от воздействия опасного напряжения. Оно не попадает на пульт управления, благодаря механическому взаимодействию конструктивных элементов пускателя с магнитным полем.

В настоящее время данные системы используются в различных вариантах технических решений: индуктивные, оптические, емкостные и электромеханические.

Трансформаторная (индуктивная) развязка

Для того чтобы построить индуктивную развязку, следует использовать магнитоиндукционные устройства трансформаторы. Его конструкция может быть с сердечником или без сердечника.

Оборудование цепей гальваноразвязкой индуктивного типа осуществляется с помощью трансформаторов, у которых коэффициент трансформации составляет единицу. К источнику сигнала подключается первичная катушка, а вторичная соединяется с приемником. На этом принципе гальванические развязки трансформаторного типа служат основой для создания магнитомодуляционных устройств.

Выходное напряжение, возникающее во вторичной обмотке, напрямую связано с напряжением на входе трансформаторного устройства. В связи с этим, индуктивная развязка имеет серьезные недостатки, почему и ограничивается ее применение:

  • Невозможно изготовить компактное устройство из-за существенных габаритных размеров трансформатора.
  • Частота пропускания ограничивается частотной модуляцией самой развязки.
  • Помехи, возникающие во входном сигнале, снижают качество сигнала на выходе.
  • Подобная трансформаторная гальваническая развязка может нормально работать только при наличии переменного напряжения.

Гальваническая развязка оптоэлектронного типа

С развитием высоких технологий, использующих полупроводниковые элементы, все более широкое распространение получают БГР блоки гальванической изоляции на основе оптоэлектронных узлов. Их основой служат оптроны, известные среди электротехников в качестве оптопар, выполненных на основе диодов, транзисторов, тиристоров и других элементов, обладающих повышенной светочувствительностью.

Общая схема оптической части, связывающая источник данных с приемником, использует в качестве сигнала нейтральные фотоны. Благодаря этому свойству, выполняется развязка цепи на входе и выходе, а также ее согласование с входными и выходными сопротивлениями.

Когда используется оптоэлектронная схема, приемник совершенно не влияет на источник сигнала, поэтому сигналы могут модулироваться в широком частотном диапазоне. Данные устройства обладают компактными размерами, поэтому они часто используются в микроэлектронике.

В конструкцию оптической пары входит световой излучатель, проводящая среда для светового потока, а также приемник, преобразующий свет в электрические сигналы. Сопротивление на входе и выходе оптрона очень большое, прядка нескольких миллионов Ом.

Вначале входной сигнал попадает на светодиод, далее в виде света он по световоду попадает на фототранзистор. На выходе устройства данная схема создает перепад или импульс выходного электрического тока. В результате цепи, связанные с двух сторон со светодиодом и фототранзистором, оказываются изолированными между собой.

Принцип действия емкостной развязки

Нередко возникает вопрос, зачем нужны различные виды развязок, в том числе и емкостная развязка. Эта схема представляет собой систему, в которой между цепями отсутствуют связи через ток, землю и другие элементы.

В этом случае передача данных электрических цепей осуществляется с помощью переменного электрического поля. Изоляция цепей происходит за счет диэлектрика, расположенного между конденсаторными пластинами. Качество развязывающего конденсатора определяется свойствами диэлектрика, размером обкладок и расстоянием между ними. Данный вид изоляции обладает повышенной энергетической эффективностью, устройства на его основе отличаются незначительными размерами, способны передавать электроэнергию и не реагируют на внешние электромагнитные поля.

Нормальная работа устройств обеспечивается разделением частоты сигнала и помех. Таким образом, емкость оказывает рабочему сигналу совсем небольшое сопротивление, а для помех создает преграду.

Работа электромеханической развязки

Помимо уже перечисленных, существует электромеханический вариант развязки. Вопрос для чего он нужен, практически не возникает, поскольку устройства на этой основе широко применяются в электротехнике.

Основой таких приборов служит реле, соединяющее электрические цепи в результате каких-либо изменений входных данных. В итоге они оказываются развязанными, а сама система получила название релейной.

Наиболее ярким примером является схема электромагнитного реле. Эти приборы нужны для защиты электроустановок и в различных автоматических системах. Они разделяются на реле постоянного и переменного тока. Основным элементом считается якорь, которые под действием электромагнита и пружины осуществляет замыкание и размыкание контактов.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
4air.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: