Любые конструкции и типы ламп дневного света оборудуются пускорегулирующими устройствами, основной функцией которых является ограничение тока. Они необходимы в тех случаях, когда собственная электрическая нагрузка не способна в полной мере ограничивать потребляемый ток. Существует несколько типов подобных схем, куда входит и электронный балласт для люминесцентных ламп, применяемый в современных моделях светильников.
По сравнению с электромагнитными схемами, этот вариант считается наиболее эффективным, обеспечивающим длительные сроки эксплуатации источников света с люминофором. Для того чтобы понять, как работает балласт, необходимо рассматривать его как единое целое с конструкцией люминесцентной лампы.
Основные функции балласта
Основным конструктивным элементом люминесцентной лампы служит стеклянная трубка, заполненная внутри одним из инертных газов аргоном, неоном или криптоном. К газовому наполнителю добавляется небольшое количество ртути. Концы трубки оборудованы металлическими электродами, через которые подается напряжение. Под действием электрического поля возникает пробой газовой среды, появляется тлеющий разряд и далее электрический ток в цепи устройства. Газовый разряд начинает излучать свет бледно-голубых тонов, слабо видимый в обычном диапазоне.
Однако, действующий электрический разряд переводит значительную часть энергии в диапазон ультрафиолетового света, невидимого человеческим глазом. Попадая на люминофорное покрытие, нанесенное на стенки колбы, ультрафиолет превращается в видимое свечение, которое и является основным источником света.
Путем изменения химического состава покрытия можно получить различную цветовую гамму свечения. В большинстве ламп используются оттенки белого цвета, а для оформления декора или дизайна интерьера применяются любые другие цвета. Данное свойство дает несомненное преимущество перед обычными лампами накаливания.
После появления в газовой среде тока, происходит его дальнейший лавинообразный рост, в результате чего внутреннее сопротивление резко падает. В этот момент может наступить перегрев, и лампа выйдет из строя. Чтобы не допустить этого, осуществляется последовательное включение дополнительной нагрузки, ограничивающей величину тока. Именно она служит балластом, известным также под названием дросселя.
В люминесцентных схемах используется балласт электромагнитного и электронного типа. В первом случае используется классическая трансформаторная схема, состоящая из металлических пластин, медных проводов и других компонентов. Первоначальный запуск или поджиг выполняется пусковым устройством стартером.
Второй вариант электронный балласт для люминесцентной лампы, создан на базе электроники с использованием диодов, транзисторов, динисторов и микросхем. Данная схема выполняет и функцию пуска, в результате которого возникает тлеющий разряд. Таким образом, электронные устройства ЭПРА получаются легкими и компактными, что во многом упрощает и всю конструкцию люминесцентной лампы.
Разновидности пускорегулирующих устройств
В настоящее время в лампах дневного света используются электромагнитные пускорегулирую-щие устройства ЭмПРА и более современные электронные (ЭПРА). Каждый из них выполняет одну и ту же функцию и отличаются лишь конструкцией. Поэтому действие приборов происходит по-разному.
Схема ЭмПРА состоит из дросселя, поддерживающего лампу в рабочем режиме, стартера, производящего пуск и конденсатора, снижающего реактивные потери. Основные детали и дополнительные компоненты соединяются в общий блок, представляющий собой довольно громоздкую конструкцию, оказывающую заметное влияние на массу светильника в целом.
Электромагнитное пускорегулирующее устройство подключается очень просто. Каждая люминесцентная лампа оборудована с торцов четырьмя электродами. Первая пара имеет контакты 1 и 2, а вторая пара 3 и 4. Подключение стартера выполняется к контактам 1 и 3, обмотка дросселя соединяется с контактом 2, к 4-му контакту подключается один из проводов питания. Другой провод соединяется со второй обмоткой дросселя.
В отличие от электромагнитной аппаратуры, электронная схема является достаточно сложным устройством, с множеством рабочих элементов. Принцип действия ЭПРА остался точно таким же, поскольку конструкция самих ламп не изменилась. Просто сам рабочий процесс выполняется совершенно по-другому. Благодаря легким и компактным деталям, заметно снизился общий вес и размеры прибора.
Подключение устройства осуществляется с помощью специальных контактных колодок, разделенных между собой. К первой группе колодок подключается внешнее питание, а ко второй сама лампа. Все компоненты ЭПРА располагаются на специальной плате и включают в себя:
- Выпрямитель. Выполняет преобразование постоянного тока в переменный.
- Фильтр, ограничивающий электромагнитные помехи.
- Сглаживающий фильтр, защищающий от скачков и перепадов напряжения.
- Дроссель.
- Корректор коэффициента мощности.
- Инвертор, выполненный по полумостовой схеме.
Принцип работы электронного балласта
Действие электронных пускорегулирующих баластников напрямую связано с принципом работы самой люминесцентной лампы. Основным этапом считается ее пуск, при котором должны соблюдаться определенные условия. В первую очередь, осуществляется разогрев обеих нитей накала, после чего на них поступает высокое напряжение, порядка 600 вольт. Значение зажигающего напряжения находится в прямой зависимости с длиной стеклянной трубки. Чем короче лампа и ниже ее мощность, тем меньше будет требуемое пусковое напряжение.
На начальном этапе происходит выпрямление входного сетевого напряжения до постоянного значения в пределах 260-270 В и его последующее сглаживание при помощи электролитического конденсатора С1. Это хорошо видно на представленной схеме.
Затем начинается работа двухтактного полумостового преобразователя, состоящего из двух высоковольтных биполярных транзисторов со структурой п-р-п. Данные транзисторы выполняют функцию ключей, а вся схема осуществляет преобразование постоянного напряжения 260-270 В, в напряжение с высокой частотой до 38 кГц. За счет этот как раз и снижаются размеры и вес устройства.
Схема электронного балласта включает в себя трансформатор, выполняющий одновременно функции нагрузки и управления. Из его трех обмоток, две четырехвитковые являются управляющими, а одна двухвитковая рабочей. Рабочая обмотка, включенная в цепь, создает необходимую нагрузку для преобразователя.
Изначально преобразователь запускается с помощью симметричного динистора, открывающегося в случае превышения напряжением порога срабатывания в местах подключения. Находясь в открытом состоянии, он посылает импульс на транзисторную базу, что приводит к запуску преобразователя. Конденсатор, находящийся в резонансной цепи и подключенный непосредственно к лампе, обеспечивает падение напряжения до уровня, при котором зажигается лампа.
Таким образом, с помощью максимального тока происходит разогрев обеих нитей накаливания, а непосредственное зажигание лампы происходит за счет высокого резонансного напряжения на конденсаторе. В зажженной лампе сопротивление уменьшается, однако сохраняющийся резонанс напряжений обеспечивает ее дальнейшее горение. Ограничение тока происходит за счет индуктивности дросселя. Несмотря на столь подробное описание, на зажигание люминесцентной лампы фактически требуется менее 1 секунды.
Как подключить
Внешний вид электронной пускорегулирующей аппаратуры напоминает блок с наружными клеммами, внутри которого установлена печатная плата. В зависимости от типа этой платы, подключается и определенное количество ламп дневного света.
Сам процесс подключения достаточно простой и не требует каких-либо специальных знаний. Он состоит из нескольких этапов:
- Первый и второй выходные коннекторы прибора подключаются к соответствующей контактной паре на приборе освещения.
- Далее на вход подается питающее напряжение.
Если же требуется выполнить соединение по отдельной схеме, следует помнить, что дроссель должен быть включен в разрыв питающего провода. Параллельно с ним, к электродам подключается стартер. Электронный балластник, коннекторы стартера и нити накаливания в обязательном порядке соединяются последовательно.
Зная, как подключить люминесцентный светильник, значительно легче провести проверку его схемы в случае какой-либо неисправности. Если нити накаливания едва заметно светятся в темноте, то вполне вероятна неисправность электронного балласта, в том числе и пробой конденсатора.
Для проверки нужно демонтировать стеклянную трубку и соединить нити накаливания с обычной лампочкой на 220 вольт малой мощности. При исправной аппаратуре она должна загореться, в противном случае придется последовательно выявлять детали, вышедшие из строя.
Преимущества электронной пускорегулирующей аппаратуры
Рассмотрев работу электронного балласта для люминесцентных ламп, и сравнив его с электромагнитными устройствами, можно с уверенностью отметить явные преимущества данных схем:
- Более продолжительные сроки эксплуатации ламп дневного света, достигающие 35 тысяч часов за счет так называемого мягкого пуска. Тут отсутствует эффект выпрямления, импульсы перенапряжения, а сама лампа не перезагружается при повышенном сетевом напряжении. Нагрузка на лампу никогда не превышает ее номинальной мощности, независимо от сроков эксплуатации и износа.
- Стабильный световой поток в течение всего периода работы.
- Возможность работы в широком диапазоне входных напряжений, в пределах 160-264 В. При этом величина суммарного потребляемого тока на линии не превысит установленного значения даже при самом низком рабочем напряжении.
- Энергопотребление снижается до 30%. Это происходит за счет более высокого КПД, достигающего 98% в зависимости от мощности того или иного устройства. Кроме того, существует возможность ограничения номинальной мощности ламп до 20% с сохранением нормативного уровня освещенности.
- Полностью отсутствует пусковой реактивный ток за счет особенностей конструкции ЭПРА. В лампах дневного света используется только активная мощность тока, поступающего из сети.
- Сохранение работоспособности светильника в случае неисправности или отсутствии одной из ламп в течение неограниченного времени. Это стало возможным благодаря зажигающему устройству, интегрированному в схему.
- Улучшенное качество света, без мерцаний и колебаний яркости вследствие перепадов сетевого напряжения.