Элегаз и его свойства

В качестве основного изолятора в электротехнических установках широко применяется смесь фтора и серы, известная как элегаз. При обычной температуре и рабочем давлении он не имеет цвета и запаха, не горючий и практически в 5 раз плотнее и тяжелее воздуха. Свойства элегаза остаются неизменными в течение неограниченного времени. При попадании в его среду электрического разряда, вначале происходит распад, а затем быстрое восстановление первоначальной диэлектрической прочности.

Благодаря своим качествам, элегаз используется в элегазовых устройствах гашения электрической дуги и является основой элегазовой изоляции.

Физическая и химическая природа элегаза

С точки зрения химии элегаз представляет собой чрезвычайно инертное соединение. Он не реагирует на кислоты и щелочи, окислители и восстановители. Данное вещество обладает повышенной устойчивостью к расплавленным металлам, слаборастворимо в воде и вступает во взаимодействие только с органическими растворителями.

Для распада этого соединения необходима температура 1100 градусов и выше. Продуктами распада являются газообразные составляющие, обладающие токсичностью и специфическим резким запахом. Накапливаясь в помещении, элегаз может вызвать кислородную недостаточность. В целом он относится к малоопасным веществам с предельно допустимой концентрацией в помещении 5000 мг/м3, а на открытом воздухе 0,001 мг/м3.

При захвате соединением электронов, происходит образование малоподвижных ионов. В результате, существенно снижается количество носителей заряда. Их разгон в электрическом поле крайне замедленный, что препятствует образованию и развитию электронных лавин. За счет этого элегаз обладает высокой электрической прочностью. Увеличенное давление способствует росту электрической прочности пропорционально действующему давлению. Нередко этот показатель превышает аналогичный параметр у жидких и твердых диэлектрических материалов.

Существенным недостатком элегаза является потеря его изоляционных качеств и переход в жидкое состояние под действием низких температур. Поэтому к температурному режиму элегазовых установок предъявляются дополнительные требования. Одним из наиболее подходящих вариантов выхода из подобных ситуаций служит смешивание элегаза с другими видами газов, например, с азотом. Другой способ заключается в использовании системы подогрева, существенно повышающей надежность оборудования при температурах минус 40 и ниже.

Физические свойства элегаза во многом зависят от равномерности и однородности электрического поля, выдаваемого распределительными устройствами. Неоднородные поля вызывают появление местных перенапряжений, которые, в свою очередь, приводят к возникновению коронирующих разрядов. Данные разряды способствуют разложению элегаза и образованию в этой среде низших фторидов, пагубно воздействующих на конструктивные элементы коммутационного оборудования.

В связи с этим, все делали и составные части должны иметь очень гладкие поверхности, на которых отсутствуют заусеницы, шероховатости и грязь, приводящие к созданию местных напряженностей электрического поля, снижению электрической прочности элегазовой изоляционной системы.

Дугогасительные качества элегаза

При всех одинаковых условиях элегаз обладает значительно большей дугогасительной способностью, по сравнению с обычным воздухом. Основными факторами являются состав плазмы, плотность элегаза, а также теплоемкость, тепло- и электропроводность, находящиеся между собой в температурной зависимости.

При достижении состояния плазмы, наступает распад молекул элегаза. Когда температура достигает 2000 К, происходит резкое увеличение теплоемкости из-за молекулярной диссоциации. Поэтому в температурном промежутке между 2000 и 3000 К теплопроводность плазмы во много раз увеличивается по сравнению с обычным воздухом. При достижении температуры 4000 К диссоциация молекул начинает уменьшаться.

Одновременно в дуге элегаза образуется атомарная сера. Ее низкий потенциал ионизации вызывает такую концентрацию электронов, которая способна поддерживать дугу даже при температуре 3000 К. Дальнейшее повышение температуры приводит к падению теплопроводности плазмы, в результате этот параметр становится таким же, как и у воздуха. Далее вновь происходит увеличение теплопроводности.

За счет этих процессов сопротивление и напряжение горящей дуги в элегазе снижается примерно на 20-30% относительно дуги, возникающей в воздухе. Подобное состояние удерживается вплоть до температур от 8 до 12 тыс. градусов. Когда температура плазмы начинает снижаться до 7000 К и далее, в ней соответственно уменьшается концентрация электронов, что приводит к падению электрической проводимости плазмы.

При достижении 6000 К ионизация атомарной серы сильно снижается, а захват электронов свободным фтором, наоборот, усиливается. В этом процессе участвуют также низшие фториды и молекулы элегаза. Диссоциация молекул завершается при температуре 4000 К, после чего начинается их рекомбинация. Это приводит к еще большему снижению плотности электроном, поскольку происходит химическое соединение атомарной серы с фтором.

В данном температурном диапазоне характеристики теплопроводности плазмы еще сохраняются на высоком уровне, охлаждение дуги продолжается за счет удаления из плазмы свободных электронов. Их захватывает атомарный фтор и молекулы элегаза. Постепенно происходит увеличение и полное восстановление электрической прочности промежутка дуги.

Промышленное получение элегаза

В основе промышленного метода производства элегаза заложена прямая реакция между газообразным фтором и расплавленной серой. В этом случае сера сжигается в потоке фтора при температуре 138-1490С в специальной крекинг-печи, представляющей собой стальной горизонтальный реактор. Данное устройство состоит из камеры загрузки и камеры сгорания, разделенных между собой перегородкой. Камера загрузки оборудована люком, через который загружается сера и электрическим нагревателем для плавления.

В камере сгорания имеется сопло, охлаждаемое водой, через которое подается фтор. Здесь же установлена термопара и конденсатор для возгонов серы. Сама сера в расплавленном виде подается из камеры загрузки в камеру сгорания через специальное отверстие, расположенное в нижней части перегородки. Отверстие оказывается закрыто расплавленной серой, что предотвращает попадание фтора в камеру загрузки.

Данный реактор, несмотря на простую конструкцию, обладает некоторыми отрицательными качествами. Сера фторируется на поверхности расплава, из-за этого в большом количестве выделяется тепло. Под его воздействием, а также под влиянием фтора, происходит усиленная коррозия реактора на границе разделения производственного цикла. Поэтому, когда производительность реактора увеличивается, появляется необходимость в отводе тепла в большом количестве и выборе материала для реактора, устойчивого к коррозии.

Избежать подобных недостатков возможно с помощью других способов производства элегаза. Нередко используется реакция фтора и четырехфтористой серы совместно с катализатором, а также термическое разложение соединения SF5CI при температуре 200-3000С. Данные способы считаются сложными и дорогостоящими, поэтому на практике используются довольно редко.

Применение элегаза и его влияние на окружающую среду

Элегаз широко используется в коммутационном оборудовании, как наиболее эффективная дугогасящая и изолирующая среда. Благодаря его свойствам, размеры современных распределительных устройств стали значительно компактнее на фоне традиционных образцов оборудования с воздушной изоляцией.

В оборудовании применяются три элегазовые конструкции, принципиально различающиеся между собой. Два первых варианта известны как управляемые системы под давлением и замкнутые системы под давлением. Во время эксплуатации требуется регулярное техническое обслуживание, что приводит к утечкам элегаза.

Третий вариант представляет собой так называемую герметично запечатанную систему, не требующую обслуживания на протяжении всего срока службы. Тем не менее, утечки иногда появляются в результате неисправности сальников или срока эксплуатации свыше 30 лет.

Подобные утечки отрицательно влияют на окружающую среду и вносят свой негативный вклад в создание парникового эффекта. Тем не менее, элегаз продолжает использоваться в высоковольтном оборудовании, поскольку достойной альтернативы ему пока не существует. В настоящее время рассматриваются вопросы по ограничению данного соединения в распределительных устройствах среднего напряжения.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
4air.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: