В физике и электротехнике существует понятие термоэлектрического эффекта, известного также, как эффект Зеебека. Данное явление представляет собой образование электродвижущей силы внутри электропроводящей замкнутой цепи, состоящей из разнородных проводников. Они изготавливаются из термоэлектрических материалов и соединяются последовательно между собой. Основным условием возникновения эффекта является разница температур, образующихся на спаях. Существует процесс, обратный термоэлектрическому эффекту, называемый эффектом Пельтье.
Термоэлектрические устройства и применение эффекта Зеебека
Термоэлектрическими материалами чаще всего являются сплавы, свойства которых похожи на полупроводниковые. К этой же категории можно отнести и некоторые химические соединения со специфическими параметрами, делающими их пригодными для использования в термоэлектрических устройствах.
Существуют три основных варианта применения эффекта Зеебека в различных конструкциях и устройствах:
- Термоэлектрические генераторы.
- Термоэлектрические холодильники.
- Измерители температур в широком диапазоне: от абсолютного нуля до нескольких тысяч градусов по Кельвину.
Незначительная разница температур между спаями, как показали опыты, приводит к появлению термоэлектродвижущей силы, которая пропорциональна температурной разнице элементов, включенных в цепь. Однородные проводники, работающие по закону Ома, имеются в любой диаде. В свою очередь, в ней возникает термоэлектродвижущая сила, которая определяется свойствами проводников и разницей температур. При этом, распределение температуры между контактами не играет какой-либо решающей роли. Это и есть термоэлектрический эффект Зеебека.
Если цепь состоит всего лишь из двух разных проводников, то данная комбинация будет называться термопарой. Уровень термо-ЭДС в этом случае зависит от материалов проводников и разницы температур между контактами. В большинстве случаев термопара применяется для определения температурных значений. Измерения до 1400 градусов по Кельвину может производится измерителями, в состав которых входят неблагородные элементы. При температуре 1900 градусов и выше потребуются металлы платиновой группы. Для специальных измерителей очень высоких температур применяются особые жаростойкие сплавы.
Преобразование тепловой энергии в электрическую осуществляется с помощью термоэлектрических генераторов. Основной рабочий процесс этих устройств также связан с эффектом Зеебека. За счет этого может преобразовываться даже сбросовая тепловая энергия, выделяемая двигателями машин. Полученная таким путем электроэнергия используется по своему назначению для питания различных устройств.
Преимуществами таких генераторов является продолжительный срок эксплуатации и возможность их хранения в нерабочем состоянии без каких-либо ограничений. Они отличаются надежностью и устойчивым режимом работы, полностью устраняют риск коротких замыканий. Работа этих устройств абсолютно бесшумна, так как в их конструкции не содержатся подвижные элементы.
Широкого применения эти устройства не получили только по причине низкого коэффициента эффективности, составляющего 3-8%. Однако при отсутствии обычных ЛЭП и низкой предполагаемой нагрузке, использование таких генераторов будет вполне оправданным. В результате, эффект Зеебека применение нашел в области энергообеспечения космической техники, в преобразователях солнечной энергии, отопительных системах и многих других областях, где использование традиционных источников электроэнергии не представляется возможным.
Эффект Зеебека и Пельтье
Суть эффекта Зеебека заключается в образовании электродвижущей силы в электрическом контуре, в состав которого входят проводники А и В, контакты которых обладают разными температурами Т1 и Т2. Данные свойства позволяют выполнять прямое преобразование тепловой энергии в электрическую.
В результате широкое применение в различных областях получил эффект Зеебека, формула которого определяет термо-ЭДС контура: где значения SA и SB являются абсолютными термоэлектродвижущими силами проводников А и В. Абсолютная термо-ЭДС относится к одной из характеристик проводника и представляет собой S=du/dT, где u является электродвижущей силой, возникающей в проводнике при наличии в нем разницы температур. Таким образом, теоретические основы эффекта Зеебека тесным образом связаны с температурными перепадами.
Элемент Пельтье является полной противоположностью устройствам, созданным на основе эффекта Зеебека. В данном случае, наоборот, под действием электрического тока образуется разница температур на рабочих площадках конструкции. Таким образом, с помощью электрического тока осуществляется перенос тепла с одной термопары на другую. При изменении направления тока нагреваемая сторона будет принимать противоположное состояние.
Данный эффект происходит в двух разнородных проводниках с одинаковой проводимостью. В каждом из них электроны обладают разным значением энергии и расположены они на очень близком расстоянии между собой. В результате произойдет перенос зарядов из одной среды в другую, и электроны с более высокой энергией на фоне низких уровней, отдадут излишки кристаллической решетке, вызывая нагрев. При недостатке энергии она, наоборот, передается от кристаллической решетки, приводя к охлаждению спая.
В случае неодинакового типа проводимости, полупроводников присутствующих в термопаре, эффект Пельтье будет выглядеть несколько иначе. При попадании в р-материал, электрон занимает место дырки на энергетическом уровне. В результате, у него теряется кинетическая энергия движения и наступает изменение состояния. Высвобожденная энергия способствует образованию свободных носителей с обеих сторон р-п-перехода, а оставшаяся часть уходит на кристаллическую решетку, которая и вызывает нагрев. Если в начальный момент значение энергии меньше, то спай начнет охлаждаться.