Site icon 4air.ru

Принцип работы электродвигателя

В настоящее время существует множество устройств, способных преобразовывать различные виды энергии. Среди них ведущее место занимают различные типы электродвигателей, преобразующих энергию электрического тока во вращательное движение вала. Механизмы с электродвигателями получили широкое распространение в промышленности и в быту. Для того чтобы наиболее эффективно использовать эти устройства, необходимо понимать принцип работы электродвигателя.

Как устроен классический электродвигатель

Каждый такой агрегат по своей сути является своеобразной технико-механической системой, с основной функцией, направленной на трансформацию электрической энергии во вращательное движение вала. Физическое действие двигателей основано на всем известном явлении электромагнитной индукции. В состав электромотора входят статор и ротор, которые соответственно являются неподвижной и движущейся частью.

В стандартных двигателях статор служит их наружной оболочкой, где происходит формирование неподвижных полей, обладающих магнитными свойствами. Роторная конструкция помещается внутри статора. Она включает в себя определенное число постоянных магнитов, сердечник в виде обмоток из проволоки, коллектор и щетки. Ток проходит по этим обмоткам, изготовленным из проводников, расположенных в виде многочисленных витков.

Когда электрический мотор, в том числе и с короткозамкнутым ротором, присоединяется к источнику питания, статорные и роторные поля начинают взаимодействовать между собой. Это приводит к возникновению момента вращения, вызывающего движение роторного вала агрегата. В свою очередь, энергия вращающегося вала подается к рабочему органу всего технического устройства, составной частью которого является тот или иной двигатель.

В процессе преобразования электричества в механическое движение, возникают определенные энергетические потери. Это связано с силой трения, намагничиванием сердечников, нагревом проводниковых элементов и другими факторами. На КПД электродвигателя оказывает влияние даже сопротивление воздуха деталям, находящимся в движении.

Тем не менее, благодаря современным технологиям, коэффициент полезного действия агрегатов нового поколения может доходить до 90%. Кроме того, эти устройства отличаются экологической чистотой и высокими эксплуатационными характеристиками.

Основные типы электродвигателей

Существуют различные типы и модификации электрических двигателей, отличающихся типом питания, напряжением, пределом мощности, количеством оборотов в минуту. Они могут быть с фазным или с короткозамкнутым ротором. Эти показатели считаются основными, однако во многих случаях особое значение придается размерам и массе, а также энергетическим показателям.

Классификация основных типов электродвигателей выглядит следующим образом:

Особенности работы электромоторов постоянного тока

Основной действующий принцип работы электродвигателя постоянного тока состоит в следующих процессах. К обмотке возбуждения, называемой также индукторной обмоткой, осуществляется подача постоянного тока. В результате, создается постоянное магнитное поле, используемое для возбуждения. В моторах с использованием постоянных магнитов, создание поля происходит под их воздействием.

Поступление постоянного тока происходит и в якорную обмотку. Здесь он попадает под влияние магнитного поля, созданного статором, создавая момент вращения. В результате такого воздействия, ротор совершает поворот на 90 градусов, затем его обмотки вновь коммутируются и вращающиеся движения продолжаются.

Двигатели, работающие на постоянном токе классифицируются в соответствии со способом возбуждения:

Устройство и принцип работы мотора постоянного тока зависит от многих факторов. Если подключение выполнено напрямую, то во время пуска якорный ток многократно превышает номинальное значение. Для выравнивания этих величин в цепь с якорем устанавливается пусковое сопротивление, выполненное в виде реостата. Плавность в время пуска обеспечивается ступенчатой конструкцией этого устройства. На первом этапе оказываются включены все ступени и сопротивление достигает максимального значения.

По мере того как двигатель разгоняется, возникает сила, противоположная ЭДС. Она постепенно возрастает, а якорный ток снижается за счет последовательного выключения ступеней. Подача электроэнергии на якорь и обмотки возбуждения может быть отрегулирована тиристорными преобразователями, известными как приводы постоянного тока.

Принцип работы электродвигателя переменного тока

Основным отличием этих агрегатов от других устройств считается возможность трансформации электрической энергии в механическую и обратно. Вращательное движение вызывают взаимодействующие магнитные поля. Одно из них относится к категории динамического или вращающегося, а другое считается статическим или постоянным, статическим. В результате их взаимодействия, вал электродвигателя начинает вращаться.

На каждом статоре электромотора наматываются обмотки в количестве трех. К каждой из них соответственно подключаются три фазы. Трехфазный ток характеризуется плавно изменяющимися параметрами напряжения и тока, течение которых имеет вид синусоидального графика. Максимальная мощность в обмотке плавно перетекает из одной ее точки в другую. На концах синусоиды, расположенных на максимальном удалении, значение этой мощности будет наименьшим.

Когда напряжение с трех фаз подается к обмоткам статора, это приводит к образованию магнитного поля, вращающегося с такой же частотой, как и в сети, то есть, 50 Гц. Внутри статора расположен ротор, в котором также образуется магнитное поле. Оно отталкивается от поля статора и создает момент вращения. В общих чертах это принцип работы большинства аналогичных технических устройств.

Как действуют асинхронные электромоторы

Среди всех агрегатов переменного тока, чаще всего во многих сферах используются асинхронные двигатели трехфазного тока. Общий принцип работы асинхронного мотора очень простой и будет рассмотрен ниже. Их количество составляет примерно 90% от всех выпускаемых изделий этого типа. Данные устройства широко используются в промышленности, на транспорте, в сельском хозяйстве и многих других областях.

Агрегаты асинхронного типа также, как и другие, выпускаются и используются для трансформации переменного тока в механическую работу вала. Если объяснять по-простому, для чайников, понятие асинхронный возникло из-за разницы, возникающей между частотами, с которыми вращаются магнитные поля статоров и роторов. Частота у статора во всех случаях превышает частоту вращения ротора.

Конструкция асинхронного двигателя

В конструкцию асинхронного электродвигателя входят две основные детали статор и ротор.

Для изготовления статора используются стальные листы, а сам он имеет форму цилиндра. В пазы конструкции укладываются обмотки из медных проводников. Их оси сдвинуты в пространстве относительно друг друга на 120 градусов. Соединение между собой концов каждой обмотки осуществляется по разным вариантам в виде звезды или треугольником.

Роторные части асинхронных моторов изготавливаются в двух вариантах. В первом случае это изделия с короткозамкнутым ротором, собираемым в форме сердечника из стальных пластинок. В его пазы заливается алюминий в расплавленном виде, что приводит к образованию стержней, коротко замкнутых с торцевыми кольцами. В агрегатах повышенной мощности алюминиевый расплав по технологии заменяется медью.

Второй вариант представляет собой фазный ротор, имеющий такую же трехфазную обмотку, аналогичную обмотке у статора. Как правило, соединение обмоток в этом случае осуществляется звездой, а их свободные концы соединяются с контактными кольцами. Эти же кольца соединяются со щетками, обеспечивающими использование добавочного резистора. Данный элемент уменьшает слишком высокое значение пусковых токов.

Когда к обмотке трехфазного статора подается напряжение, во всех фазах возникает магнитный поток, изменяющийся с такой же частотой, как и в поступающем напряжении. У всех магнитных потоков имеется сдвиг на 120 градусов по отношению друг к другу. В результате образуется общий магнитный поток, который и обеспечивает собственное вращение. Он оказывает влияние на проводники роторных обмоток и создает в них ЭДС.

Образовавшийся ток начинает взаимодействовать с магнитным потоком статора, что, в результате, приводит к возникновению пускового момента электромотора. То есть, ротор устремляется к повороту в том же самом направлении, в каком осуществляется вращение магнитного поля статора. После того как пусковой момент превысит тормозной момент ротора, вал двигателя начнет вращаться.

Exit mobile version