Размеры люминесцентных ламп

Среди различных газоразрядных источников освещения, лампы дневного света низкого давления занимают ведущее место, благодаря своей широкой популярности. Они отличаются качественным спектральным составом, высокой световой отдачей и большими сроками эксплуатации. Чаще всего используются линейные люминесцентные лампы, размеры которых дают возможность применять их во многих областях.

Высокие показатели световой отдачи выдает дуговой разряд в ртутных парах, сочетаясь с ультрафиолетовым излучением, преобразующимся в слое люминофора. В результате, по сравнению с обычной лампочкой, получается более ровный и устойчивый свет, максимально приближенный к естественному освещению.

Конструкция люминесцентной лампы

Лампа линейная люминесцентная относится к газоразрядным светильниками низкого давления, где электрический разряд образуется в газовой среде, смешанной с ртутными парами.

Основным конструктивным элементом является стеклянная колба со стандартными диаметрами 12, 16, 26 и 38 мм. В обычных лампах она имеет прямую форму, а в компактных применяется более сложная конфигурация. На концах цилиндра установлены стеклянные ножки, герметично впаянные в торцы. Они предназначены для размещения электродов, изготовленных из вольфрамовой проволоки. В свою очередь, электроды соединяются методом пайки со штырьками цоколя.

Во внутреннем пространстве колбы создается вакуум, после чего сюда закачивается инертных газ, чаще всего аргон. К нему добавляется небольшое количество ртути или ртутного сплава. Поверхность электродов покрывается активными веществами, содержащими окислы бария, кальция, стронция и других элементов. Их работа заметно влияет на коэффициент пульсации.

Под действием приложенного напряжения в газовой среде возникает разряд электричества, значение которого ограничено компонентами пускорегулирующей аппаратуры. Одновременно из электродов начинает испускаться поток электронов, подвергающих ионизации атомы ртути. В результате, возникает видимое свечение и ультрафиолетовое излучение, невидимое обычным зрением. Далее, ультрафиолет попадает на слой люминофора, покрывающего внутреннюю поверхность колбы. Под его воздействием возникает световое излучение в видимой части спектра.

Таким образом, свечение лампы происходит за счет электрического разряда (в меньшей степени) и светящегося люминофорного покрытия, выдающего основную часть светового потока. В зависимости от состава люминофора можно получать любые цвета, начиная от обычного белого, и заканчивая разнообразными тонами и оттенками, количество которых постоянно увеличивается.

Размеры и эффективность

Для того чтобы получить максимальный эффект от электрического разряда, во внутреннем пространстве колбы должна поддерживаться определенная температура. В этом случае ультрафиолетовое излучение ртутных паров будет наибольшим. Данный параметр напрямую связан с диаметром колбы. Дело в том, что плотность тока во всех лампах должна быть примерно одинаковой. Этот показатель определяется путем деления величины тока на площадь сечения стеклянного цилиндра.

В связи с этим, лампы с колбами одинакового диаметра, но с различной мощностью, способны работать при одном и том же номинальном токе. Между падением напряжения и длиной цилиндра существует прямая пропорциональная зависимость, определяющая класс энергоэффективности. То есть, чем длинее лампа, тем выше ее мощность, что наглядно отражено на рисунке. При диаметре Т5 и 13 т длина составит 52 см, 21 ватт 85 см, 28 ватт 115 см. Диаметр Т8 и мощность 15 ватт соответствуют длине 44 см.

Большие размеры люминесцентных ламп изначально делали их не совсем удобными в использовании, поскольку им требовались и светильники с аналогичными габаритами. Производители всегда хотели уменьшить это соотношение, используя различные способы. Однако нельзя было просто снизить длину колбы и увеличить ток разряда, чтобы достичь установленной мощности. Это привело бы к возрастанию температуры внутри колбы и увеличению давления ртутных паров. При таких параметрах световая отдача ламп заметно снижается.

Инженерная мысль пошла другим путем, и размеры изделий были снижены путем изменения их конфигурации. Длинные цилиндры сгибались пополам или соединялись в кольцо, что позволило получить источники света U-образной и кольцевой формы с уменьшенными габаритами без потерь мощности. Одновременно удалось повысить коэффициент мощности и снизить коэффициент пульсации.

Окончательно проблема разрешилась лишь с появлением люминофоров, устойчивых к высоким электрическим нагрузкам. В результате, диаметр колб значительно снизился и достиг 12 мм. Общая длина ламп еще больше сократилась за счет многократных изгибов тонких стеклянных цилиндров. Появились компактные изделия, с таким же внутренним устройством и принципом работы, как у обычных ламп линейного типа.

Виды ламп дневного света

Все стандартные люминесцентные лампы разделяются на два основных типа высокого и низкого давления, определивших различия и особенности конструкции каждого из них. Описание каждой из них приложено в инструкции по эксплуатации.

Первый вариант представлен лампами ДРЛ, получившими широкое распространение в уличных светильниках. Они отличаются высокой мощностью и низкой цветопередачей, поэтому и применяются на больших площадях, где не требуется высокое качество света. Существуют изделия с повышенной светоотдачей и различной цветовой гаммой. Они используются в качестве мощных точечных источников света и декоративной подсветки, выделяющей архитектурные элементы зданий.

Более всего оказалась востребована люминесцентная лампа низкого давления, которая используется повсеместно в быту и на производстве. Преимущественно, это изделия цилиндрической формы, успешно заменяющие традиционные лампы накаливания. В настоящее время рынок электроники все больше заполняется компактными люминесцентными лампами. Независимо от конструкции, все они работают вместе со пускорегулирующей аппаратурой электромагнитного или электронного типа, снижающей коэффициент пульсации. Последний вариант представляет собой миниатюрную электронную схему, способную разместиться в цоколе лампы.

Пускорегулирующая аппаратура

Любые типы газоразрядных ламп не могут быть напрямую подключены к электрической сети. Находясь в холодном состоянии, они обладают высоким уровнем сопротивления и для создания разряда им требуется импульс высокого напряжения. После того как появляется разряд в осветительном устройстве возникает сопротивление с отрицательным значением. Для его компенсации нельзя обойтись простым включением сопротивления в цепи. Это приведет к короткому замыканию и выходу из строя источника освещения.

Для преодоления энергетической зависимости, вместе с лампами дневного света применяются балласты или пускорегулирующая аппаратура.

С самого начала и до сих пор в светильниках применяются устройства электромагнитного типа ЭмПРА. Основой прибора служит дроссель, обладающий индуктивным сопротивлением. Он подключается вместе со стартером, обеспечивающим включение и выключение. Параллельно подключается конденсатор с высокой емкостью. Он создает резонансный контур, с помощью которого формируется продолжительный импульс, зажигающий лампу.

Существенным недостатком такого балласта является высокое потребление электроэнергии дросселем. В некоторых случаях работа устройства сопровождается неприятным гудением, возникает пульсация люминесцентных ламп, отрицательно влияющая на зрение. Данная аппаратура отличается большими размерами, имеет значительный вес. Она может не запуститься при отрицательных температурах.

Все негативные проявления, в том числе и пульсации люминесцентных ламп удалось преодолеть с появлением электронного балласта ЭПРА. Вместо громоздких компонентов здесь использованы компактные микросхемы на основе диодов и транзисторов, что позволило заметно снизить их вес. Данное устройство также обеспечивает лампу электрическим током, доводя его параметры до нужных значений, снижая разницу в потреблении. Создается нужное напряжение, частота которого отличается от сетевой и составляет 50-60 Гц.

На некоторых участках частота достигает 25-130 кГц, что позволило устранить мигание, негативно влияющее на зрение и снизить коэффициент пульсации. Прогрев электродов осуществляется за короткий промежуток времени, после чего лампа сразу же загорается. Использование ЭПРА существенно увеличивает срок годности и нормальной эксплуатации люминесцентных источников света.

Параметры ламп и их маркировка

Все типы люминесцентных ламп обладают своими параметрами и техническими характеристиками, отображаемыми в маркировке изделий. В основном это показатели мощности и цветопередачи, а также различные виды типоразмеров.

В маркировке первая буква Л означает лампу, а следующие буквенные обозначения это характеристика и соответствующие параметры изделия:

  • Д дневной свет.
  • Б белый.
  • ХБ холодно-белый.
  • ТБ тепло-белый.
  • Е естественных тонов.
  • ХЕ холодный естественный свет.
  • Г, К, З, Ж, Р свет различных цветов и оттенков, которые более подробно отражает таблица.

На некоторых изделиях присутствует буква Ц или ЦЦ, что соответствует люминофору с улучшенной цветопередачей.

Цифровые обозначения наносятся по международным стандартам и включают в себя три цифры. Первая соответствует качеству цветопередачи, 2 и 3 обозначается цветовая температура люминесцентных ламп. Чем выше первая цифра, тем лучше качество цветопередачи. Повышение остальных цифр делает оттенки цветов более холодными.

Все люминесцентные лампы имеют размеры и диаметр отражаемый следующим образом: Т5 диаметр 5/8 дюйма или 1,59 см, Т8 8/8 или полный дюйм 2,54 см, Т10 10/8 дюйма или 3.17 см и т.д. Штырьковые цоколи маркируются как G23, G24, G27, G53 или 2D, а резьбовые E14, E27, E40. В первом случае цифры означают сколько будет расстояние между штырьками, а во втором диаметр резьбы цоколей. Для более точного выбора используется специальная таблица.

На каждом изделии указано питающее напряжение и способ его запуска. Например, маркировка люминесцентной лампы RS или rapid start указывает на отсутствие необходимости в дополнительных элементах для пуска, а вся аппаратура уже находится внутри корпуса изделия.

Сетевое напряжение и мощность лампы

Для нормальной работы источников освещения требуется рабочее напряжение сети 220В с частотой 50 Гц. Это стандартные параметры, отклонение от которых отрицательно влияет на технические характеристики люминесцентных ламп, снижая их функциональность и качество освещения.

От напряжения практически полностью зависит потребляемая мощность. Его воздействие проявляется следующим образом:

  • Значительные перепады напряжения приводят к изменению мощности в люминесцентной лампе как в сторону увеличения, так и в сторону уменьшения. Даже очень мощный прибор будет слабо светить при недостаточном напряжении, произойдет снижение энергоэффективности ламп. Поэтому, прежде чем говорить о неисправности, следует замерить сетевое напряжение.
  • Резкие колебания напряжения значительно снижают качество светового потока. В случае изменения частоты возрастает коэффициент пульсации и лампа начинает мерцать.
  • Нестабильность сетевого напряжения приводит к быстрому износу и снижению работоспособности источника освещения. Колебания не должны превышать 10% от номинала, в противном случае срок службы люминесцентных ламп снизится и они быстро выйдут из строя.

Поэтому, выбирая лампу для конкретного места хранения и установки, следует обращать внимание на то, сколько мощности она потребит. При отсутствии маркировки нужно произвести замеры и уже потом принимать решение об использовании данной лампы.

Рейтинг
( Пока оценок нет )
Понравилась статья? Поделиться с друзьями:
4air.ru
Добавить комментарий

;-) :| :x :twisted: :smile: :shock: :sad: :roll: :razz: :oops: :o :mrgreen: :lol: :idea: :grin: :evil: :cry: :cool: :arrow: :???: :?: :!: